Is Hormonal Treatment of Congenital Undescended Testes Justified? A Debate

Faruk Hadziselimovic
Cryptorchidism Research Institute, Kindermedizinisches Zentrum, Liestal, Switzerland

Abstract
Abnormal germ cell development in cryptorchidism is not a result of a congenital dysgenesis but is preceded by a hormone imbalance and perturbation in germ cell-specific gene expression during abrogated mini-puberty. Adequate treatment with low doses of GnRHa enables 86% of men to achieve a normal sperm count and, most importantly, prevent development of azoospermia. GnRHa treatment induces a significant transcriptional response, including protein coding genes involved in pituitary development, the hypothalamic-pituitary-gonadal axis, and testosterone synthesis. Furthermore, hormonal treatment to achieve epididymo-testicular descent as a first choice of treatment of cryptorchidism has a long tradition in Europe. It eliminates the necessity of subsequent surgery. Moreover, in the cases of non-responders it facilitates orchidopexy and contributes considerably to a reduced incidence of unilateral and the more serious bilateral complete post-surgical testicular atrophy.

© 2019 S. Karger AG, Basel

Cryptorchidism represents the most frequent causes of azoospermia in man [Fedder et al., 2004]. The estimated frequency of azoospermia in the normal population is 0.4% (3/711) [Itoh et al., 2001], while non-obstructive azoospermia was found 25 times more often in unilateral and 80 times more often in bilateral cryptorchidism [Hadziselimovic et al., 2011a]. Of note, the number of patients who developed azoospermia or severe oligospermia is the same in patients who had surgery before and after the first year of age (p = 0.39, Fisher’s Exact test) [reviewed by Verkauskas et al., 2016]. Consequently, in cryptorchidism severe infertility and azoospermia develop irrespective of the age the treatment was administered [Hadziselimovic and Herzog, 2001; Hadziselimovic et al., 2011a]. Thus, early and successful orchidopexy ultimately does not improve fertility, because it fails to address the underlying pathophysiological cause that is a defective mini-puberty [Hadziselimovic and Herzog, 2001]. During abrogated mini-puberty, insufficient LH secretion results in reduced Leydig cell capacity and a low testosterone plasma level, culminating in impaired Ad spermatogonia development [Hadziselimovic et al., 2005]. It has been shown that the transformation of gonocytes into Ad spermatogonia is a testosterone-dependent process [Zivkovic et al., 2006], and if this transformation fails during infancy, infertility is inevitable [Hadziselimovic and Herzog, 2001; Hadziselimovic et al., 2007; Kim et al., 2008]. Half of the patients presenting with unilateral cryptorchidism and the majority of those presenting with bilateral cryptorchidism belong to the so-called high infertility risk (HIR) group [Bilius et al., 2015]. The goal of treating cryptorchidism is to achieve normal fertility, which is...
largely dependent on a functioning mini-puberty and, as a result, the presence of Ad spermatogonia in prepubertal testes [Hadziselimovic et al., 2005].

Is Cryptorchidism an Endocrinopathy?

In 1975, pronounced Leydig cell atrophy starting in early infancy was described as evidence to support endocrinopathy as an etiological factor in cryptorchidism [Hadziselimovic et al., 1975]. A failed testosterone surge in the second postnatal month was observed in preterm infants in whom cryptorchidism was diagnosed at 18 months post term [Baker et al., 1988]. Thus, preterm infants with undescended testes appear to be similar in this respect to full-term cryptorchid infants [Gendrel et al., 1978]. Except for a blunted testosterone response to human chorionic gonadotropins (HCG), there is no evidence of altered steroidogenesis in cryptorchid testes prior to puberty [reviewed in Jockenhovel and Swerdlow, 1989]. Furthermore, lower LH plasma values or lower LH response by gonadotropin-releasing hormone (GnRH) was demonstrated several times [Gendrel et al., 1977; Jacobelli et al., 1979; Mazzi et al., 1979; Bollerslev et al., 1986; Job et al., 1987; Hamza et al., 2001]. In addition, a cohort of cryptorchid boys lacking Ad spermatogonia showed low basal and stimulated gonadotropin plasma values that are compatible with those found in cases of hypogonadotropic hypogonadism [Hadziselimovic et al., 1979; Verkauskas et al., 2016]. Of importance, the first morning void urine highlights gonadotropin deficiency better than plasma values do. Both LH and FSH first morning void urine values were significantly lower in cryptorchid boys when compared to age-matched controls [Hadziselimovic, 1987]. Therefore, the cause of the lower testosterone response seems to be at both the pituitary and hypothalamic level.

Paternity as a Fertility Indicator?

Lee and co-authors, who performed a retrospective review of medical records and sent a detailed questionnaire to patients, concluded that unilateral cryptorchid men have a normal paternity rate [Lee et al., 1996]. It should be noted that in this study the authors did not rely upon the results of testicular biopsies. Consequently, the condition of testicular tissues and, importantly, the presence of Ad spermatogonia were not assessed. The patients were considered to be cryptorchid solely on the fact that they had surgery. Therefore, the inevitable inclusion of low infertility risk (LIR) patients and misdiagnosed cases of retractile testes, all of them having an excellent fertility outcome, distort the results. Thus, paternity alone is not a good fertility indicator. More importantly, only testicular biopsy can reliably determine which patients will likely become infertile and could therefore benefit from hormonal therapy. This means that the rationale behind a testicular biopsy is both diagnostic and therapeutic. Testicular biopsy is even more justified as it allowed the detection of in situ carcinoma occurring in 0.5% of cryptorchid boys [Hadziselimovic et al., 1997].

Sperm Count and Long-Term Follow-Up Studies

A total of 47.5% of unilateral and 78% of bilateral cryptorchid males had their sperm concentration in the infertility range according to WHO standards [Hadziselimovic et al., 2005]. Severely decreased sperm counts and no age-related differences were found in the HIR group of cryptorchid men, indicating that successful orchidopexy is insufficient to prevent the development of infertility and azoospermia [Hadziselimovic et al., 2005]. When transformation into Ad spermatogonia had occurred (indicating functional mini-puberty), age-related differenc-
es in the fertility outcome were observed. The younger the unilateral cryptorchid boys were at surgery, the higher their sperm count was when they reached adulthood. However, although the difference in the sperm count of boys younger than 3 years at surgery (median 156 × 10^6 /ejaculate) versus boys older than 8 years (median 87 × 10^6 /ejaculate) is statistically significant, it is biologically irrelevant [Hadziselimovic et al., 2005]. Both groups had a total sperm count within the normal range [Hadziselimovic et al., 2005]. The results of a 20-year long-term prospective study designed in 1985 in Philadelphia by the late John Duckett and Faruk Hadziselimovic were in accordance with our previous study from 2005, underscoring the importance of an intact hypothalamus-pituitary-gonadal (HPG) axis for fertility development in cryptorchid men [Hadziselimovic et al., 2005; Hadziselimovic and Hoecht, 2008]. Sperm concentrations correlated to the number of Ad spermatogonia found at the time of orchidopexy (p <0.001): 80% of males in the HIR group (lacking Ad spermatogonia) were oligospermic and 20% showed azoospermia [Hadziselimovic and Hoecht, 2008]. In patients with unilateral cryptorchidism, 70% of scrotal testes showed different degrees of impaired transformation of Ad spermatogonia, indicating that cryptorchidism is a bilateral disease. Furthermore, correlations between testicular histology and post-pubertal hormone levels confirmed a relative gonadotropin deficiency in the majority of adult cryptorchid men (Fig. 1). The most critical factor for the development of infertility is the finding that gonadotropin levels show a more significant correlation with the presence or absence of Ad spermatogonia in both gonads than with unilateral or bilateral undescended testes (Fig. 2) [Hadziselimovic and Hoecht, 2008].

Fig. 2. a Values of Ad spermatogonia vary among the high-infertility-risk (HIR) (−/−, n = 18), intermediate-infertility-risk (IIR) (−/+ , n = 46), and low-infertility-risk (LIR) (+/+ , n = 25) groups. In the IIR group, Ad spermatogonia were always present in the scrotal testis. The lowest germ cell count was observed in the HIR (−/−) group and the highest (although still lower than controls) was observed in the LIR (+/+) group. **b** Sperm count in the 3 different infertility risk groups. **c** Analysis of plasma FSH levels in relation to the presence of Ad spermatogonia in the 3 different infertility risk groups. Ad −/−: HIR (n = 18); Ad −/+: IIR (n = 46); and Ad +/+: LIR (n = 24). FSH normal range: 2–8 IU/L. **d** The LH patients with the healthiest histology have LH levels in the hypogonadotropic range, while the 2 other groups have normal LH values despite more severe testicular pathology, indicating a relative LH deficiency. LH normal range: 4.8–10.8 IU/L.
Fig. 3. Incidence of azoospermia in high infertility risk groups. Two surgery-only groups, [38%, \(n = 8/20 \); Nistal et al., 2000, and 33%, \(n = 20/61 \); Hadziselimovic et al., 2007] are compared to a group in which surgery was followed by 6 months of buserelin treatment \([n = 0/50; \text{Hadziselimovic, } 2008] \).

...in epigenetic processes, including AIRN, FENDRR, XIST, and HOTAIR, were found in the HIR group. These data are consistent with the hypothesis that hypogonadotropic hypogonadism in boys with altered mini-puberty is the consequence of a profoundly altered gene expression program involving protein-coding genes and IncRNAs [Hadziselimovic et al., 2017].

Germ and Sertoli Cell Gene Stimulation by GnRH Treatment

Four genes (DMRTC2, PAX7, BRACHYURY/T, and TERT) were associated with defective mini-puberty, had decreased expression in HIR, and were responsive to GnRH [Gegenschatz-Schmid et al., 2017]. Additionally, the markers PAX7, EGR2, NRG1, and NRG3 seem to represent an alternative pathway that is activated by GnRH and is involved in the gonocyte-to-Ad spermatogonia transition. Furthermore, EGR2, ETV5, ID4, TSPAN8, and T/BRACHYURY are all regulated by FGF/GDNF signal-
In addition, FOXO1, KIT, NANOS2, NRG1, NRG3, and PAX7 expressions are regulated by retinoic acid [Gegenschatz-Schmid et al., 2017]. The HIR group showed decreased transcription of CYP26B1 [Hadziselimovic et al., 2009], which is known to be responsible for spermatogenesis and, via retinoic signaling, the determination of germ cell fate in mice [Bowles et al., 2006]. Of interest, 4 genes localized in the male-specific Y region, RBMY1B, RBMY1E, RBMY1J, and TSPY4, show reduced mRNA levels in HIR samples and also positively responded to GnRHa treatment. This observation supports data of global conservations of the epigenetic pattern associated with the sequences of the same origin (X-transposed, X-degenerate, and ampliconic) [Gegenschatz-Schmid et al., 2018].

PRDM9 was the only downregulated gene in the HIR group that was also stimulated by GnRHa treatment. PRDM9 is a downstream effector of testosterone action and is related to testosterone-regulated cell proliferation in classical testosterone target tissues (Fig. 4). Thus, PRDM9 is involved in the establishment of Ad spermatogonia and its perturbation impacts patients afflicted by cryptorchidism.
Impaired mini-puberty affects Sertoli cell development through positive and negative regulation of morpho-regulatory and apoptotic genes. In contrast to the germ cells, GnRHa treatment had a repressive effect on most Sertoli cell-specific genes, suggesting that Sertoli cells underwent a cellular rearrangement. We propose that gonadotropin-dependent increases in FASLG and GDNF expression drive Sertoli cell proliferation and germ cell self-renewal and support the transition of gonocytes to Ad spermatogonia, independently of inhibin.

In conclusion, EGR4 and PITX1 controlled by PROK2/CHD7/FGFR1/SPRY4 genes are responsible for LH deficiency, which in turn affects the Ad spermatogonia transitional effectors FGFR3, FGF9, NANOS2, NANOS3, SOHLH1, and SOHLH2. Upon GnRHa treatment, however, alternative pathways are activated, including the LH-secretion orchestrating factors EGR2, EGR3, TAC1, TAC3, PROPI, and LEP and the gonocyte-to-Ad spermatogonia transition effectors DMRTC2, T, PAX7, TERT, NRG1, NRG3, RBMY1B, RBMY1E, and RBMY1J [Hadziselimovic et al., 2016; Gegenschatz-Schmid et al., 2017]. Obtained results indicate novel testosterone-dependent genes and provide valuable insight into the transcriptional response to both defective mini-puberty and curative GnRHa treatment.

Temperature or Transposons?

In contrast to the general belief that high temperature damages cryptorchid gonads before sexual maturation is completed, recent evidence is consistent with the idea that germ cell loss resulting in infertility due to cryptorchidism is a consequence of alterations in the Piwi pathway and transposon de-repression [Hadziselimovic et al., 2011b, 2015]. Several members of the Tudor gene family and members of the DEAD-box RNA helicase family, together with GTSF1, MEAL, MOV10L1 genes, were found to show significantly lower RNA signals in the HIR group [Hadziselimovic et al., 2011b, 2015]. Positive cytoplasmic antibody staining indicated that the mRNA and protein levels correspond. Patients from the LIR group showed coherently stronger staining for GTSF1 and PIWIL4 proteins and weaker staining for L1 transposon when compared to the HIR samples [Hadziselimovic et al., 2011b, 2015]. These findings provide evidence consistent with the idea that infertility in cryptorchidism is a consequence of alterations in the Piwi pathway and transposon de-repression that are induced by impaired mini-puberty.

Is There a Positive Effect of Hormonal Treatment for Epididymo-Testicular Descent prior to Surgery?

The developing gonadotropin-releasing hormone system is essential for epididymo-testicular descent and is highly sensitive to reduced fibroblast growth factor (FGF) signaling. Our understanding of the impact of FGFR1 in the process of epididymo-testicular descent has considerably improved [Hadziselimovic et al., 2010]. At later stages of embryonic development, the undifferentiated epididymal mesenchyme is a specific domain for FGFR1 expression. Most individuals with syndromic crypto-epididymis, as well as individuals with isolated non-descent of the epididymo-testicular unit, exhibit some disturbance of FGF, FGFR1 and/or genes involved in HPG axis regulation. However, the mechanisms underlying FGF dysregulation may differ between various syndromes [Hadziselimovic, 2016]. In cryptorchid boys, GnRH treatment reportedly induces increased testosterone secretion and stimulates further epididymis development and completion of epididymo-testicular descent [Bica and Hadziselimovic, 1993]. Boys with successful descent of the epididymis and testis have a normal-sized epididymis, while the majority of non-responders to hormonal treatment have a small and underdeveloped epididymis [Bica and Hadziselimovic, 1993].

The main reason for not recommending hormonal treatment of the undescended epididymo-testicular union is supposedly that the success rate of this treatment is as low as 20% [Ritzen et al., 2007]. This statement is misleading because it does not consider the distribution of the positions of the epididymo-testicular unit before treatment. Moreover, all studies quoted against hormonal treatment lack the critical long-term follow-up patient survey. One of the first long-term follow-up open studies showed that 4 years after successful hormonal treatment 65% of the testes were still descended [Hadziselimovic et al., 1984; Hadziselimovic, 2017]. In 1995, Höcht published a randomized LH-RH versus surgery study including 60 cryptorchid boys aged 2–9 years [Höcht, 1983, 1987]. All patients randomized for the surgery treatment alone had histological changes compatible with cryptorchidism, so it is highly likely that only undescended and not also retractile testes were treated. LH-RH treatment was successful in 59% of the patients. A long-term study from Waldschmidt and colleagues [1993], who analyzed the descent rate 9 years after treatment, found that 52% of the testes remained descended. Thus, LH-RH treatment is effective in...
achieving permanent descent of true cryptorchid testes. Of note, the highest success was achieved when testes were localized in the pre-scrotal position (Table 1).

Conclusion

Abnormal mini-puberty is responsible for the development of infertility in cryptorchidism, and post-surgical hormonal treatment is highly recommended for the high infertility and azoospermia risk group that underwent successful early orchidopexy. Therefore, 2 steps of hormonal treatment currently remain the optimal therapeutic choice (Table 2).

Disclosure Statement

The author has no conflicts of interest to declare.

Table 1. Descent rate of the epididymo-testicular unit from a pre-scrotal position treated with gonadotropin-releasing hormone

<table>
<thead>
<tr>
<th>Study Authors</th>
<th>n</th>
<th>Success, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Muinck Keizer-Schrama et al. [1986]</td>
<td>6/9</td>
<td>66</td>
</tr>
<tr>
<td>Borkenstein and Zobel [1985]</td>
<td>5/9</td>
<td>55</td>
</tr>
<tr>
<td>Hagberg and Westphal [1987]</td>
<td>8/17</td>
<td>47</td>
</tr>
<tr>
<td>Höcht [1987]</td>
<td>3/4</td>
<td>75</td>
</tr>
<tr>
<td>Bica and Hadziselimovic [1993]</td>
<td>6/11</td>
<td>54.5</td>
</tr>
<tr>
<td>Total</td>
<td>28/50</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 2. Basel 4-step concept of cryptorchidism treatment

<table>
<thead>
<tr>
<th>Step</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LH-RH 1.2 mg/day for 28 days; if no or partial success:</td>
</tr>
<tr>
<td>2</td>
<td>500 IU hCG/week for 3 weeks; if no descent:</td>
</tr>
<tr>
<td>3</td>
<td>Orchidopexy and bilateral biopsy; if no bilateral Ad spermatogonia:</td>
</tr>
<tr>
<td>4</td>
<td>LH-RH 10 μg on alternate day for 6 months</td>
</tr>
</tbody>
</table>

LH-RH, luteinizing hormone-releasing hormone; hCG, human chorionic gonadotropin

DOI: 10.1159/000496418